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a b s t r a c t 

Empirical imaging biomarkers such as the level of the regional pathological burden are widely used 

to measure the risk of developing neurodegenerative diseases such as Alzheimer’s disease (AD). How- 

ever, ample evidence shows that the brain network (wirings of white matter fibers) plays a vital role in 

the progression of AD, where neuropathological burdens often propagate across the brain network in a 

prion-like manner. In this context, characterizing the spreading pathway of AD-related neuropathological 

events sheds new light on understanding the heterogeneity of pathophysiological mechanisms in AD. In 

this work, we propose a manifold-based harmonic network analysis approach to explore a novel imag- 

ing biomarker in the form of the AD propagation pattern, which eventually allows us to identify the 

AD-related spreading pathways of neuropathological events throughout the brain. The backbone of this 

new imaging biomarker is a set of region-adaptive harmonic wavelets that represent the common net- 

work topology across individuals. We conceptualize that the individual’s brain network and its associated 

pathology pattern form a unique system, which vibrates as do all natural objects in the universe. Thus, 

we can computationally excite such a brain system using selected harmonic wavelets that match the sys- 

tem’s resonance frequency, where the resulting oscillatory wave manifests the system-level propagation 

pattern of neuropathological events across the brain network. We evaluate the statistical power of our 

harmonic network analysis approach on large-scale neuroimaging data from ADNI. Compared with the 

other empirical biomarkers, our harmonic wavelets not only yield a new imaging biomarker to poten- 

tially predict the cognitive decline in the early stage but also offer a new window to capture the in-vivo 

spreading pathways of neuropathological burden with a rigorous mathematics insight. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenera- 

ive disease often characterized by memory upset, behavioral and 

ognitive decline as aging ( Blennow et al., 2006 ). AD is a progres-

ive disease such that it starts from mild cognitive impairment 

MCI) ( Reisberg et al., 2008 ; Vemuri et al., 2009 ) and gradually

preads throughout the brain until the damage reaches the occipi- 

al lobe in individuals that survive through to severe stages of AD. 

ue to the overlapping nature with the typical aging effect, reli- 

ble AD biomarker becomes critical in staging the neurodegener- 
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tive process and predicting the risk of developing AD before the 

nset of clinical symptoms. 

In the National Institute of Aging and Alzheimer’s Associa- 

ion (NIA-AA) research framework ( Jack et al., 2018 ), AD biomark- 

rs are grouped into amyloid β (A β) deposition ( Bloom, 2014 ), 

athologic tau ( Braak and Del Tredici, 2018 ), and neurodegener- 

tion ( Devanand et al., 2010 ) (A-T-N). Although progressive neu- 

on loss is a hallmark of AD ( Morrison and Hof, 1997 ; Schaeffer

t al., 2011 ; Serran-Pozo et al., 2011 ), converging evidence shows 

hat AD-related neurological impairment may reflect dysfunction 

ather than loss of neurons ( Matthews et al., 2012 ; Palop et al.,

006 ; Pievani et al., 2014 ). In this regard, AD can be under- 

tood as a disconnection syndrome where the large-scale brain 

etwork is progressively disrupted by neuropathological processes 

https://doi.org/10.1016/j.media.2022.102446
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102446&domain=pdf
mailto:grwu@med.unc.edu
https://doi.org/10.1016/j.media.2022.102446
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Fig. 1. (a) The global nature of whole-brain harmonic waves precludes the identification of local propagation patterns that are presented within the associated subnetwork. 

Since we derive the region-adaptive harmonic wavelets within the associated subnetwork centered at each node (b), our harmonic wavelets (c-d) depict the local network 

oscillation, which allows us to capture the spatial-spectrum harmonic patterns in brain network inference. 
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 Pievani et al., 2014 ). Recently, the research focus has been shifted 

o characterize the propagation patterns of A-T-N biomarkers 

hroughout the brain ( Raj et al., 2012 , 2015 ; Vogel et al., 2020 ,

021 ). For example, an epidemic spreading model is employed in 

ogel et al. (2020) to simulate tau spread, which can explain up to 

0% variance in the overall spatial pattern of tau among 312 indi- 

iduals along the Alzheimer’s disease continuum. 

Recent developments in diffusion-weighted MRI and network 

euroscience allow us to characterize the white matter pathway 

apturing how gray matter regions are connected in the con- 

ext of the large-scale brain network. The network degeneration 

ypothesis – significant changes might occur in the topological 

roperties of structural brain network as AD progresses – is sup- 

orted by many neuroimaging studies ( Araque Caballero et al., 

018 ; Filippi et al., 2017 ). In addition, convergent evidence shows 

hat the presence of AD pathology burden exhibits a unique spatial 

attern that is highly correlated with the region-to-region connec- 

ions in the network ( Braak and Braak, 1996 ; Sepulcre et al., 2018 ;

u et al., 2016 ). All pieces of evidence put the spotlight on the

nvestigation of the spreading pathway of A-T-N biomarkers in the 

ontext of region-to-region connectivity. 

In our previous work ( Chen et al., 2020a , 2020b ), we presented

 network harmonic analysis approach to characterize the network 

lterations in the graph spectrum domain. Specifically, we assume 

he spreading of the neuropathological burden follows the wires of 

hite matter fibers. Since the neuropathological events running on 

he brain network are steered by the topology of these wirings, we 

egard the regional level of neuropathological burden as the graph 

ignal, instead of the data array, where the element-wise relation- 

hip in the graph signal is characterized by the connectivity in the 

etwork. By doing so, we use the eigenvectors (called harmonic 

aves) of the underlying graph Laplacian as the basis function to 

epresent the observed instance of the graph signal. Furthermore, 

e proposed a manifold-based approach to unify the eigenvectors 

rom individual brain networks into a set of common harmonic 

aves, which provides a reference to compare and quantify indi- 

idual differences in the graph spectrum domain. 

Harmonic waves provide building blocks to form biological pat- 

erns (e.g., the animal coats in morphogenesis) and physical pat- 

erns in acoustics and quantum mechanics. In Chen et al. (2020a) , 

e have applied the principles of these harmonic waves into the 

natomy of the human brain, which emerges a new network analy- 

is approach using network-specific harmonic waves. The common 

armonic waves constitute a new neurobiological basis for under- 

tanding disease progression, where each harmonic wave exhibits a 

nique propagation pattern of neuro-pathological burdens spread- 

ng across brain networks. Although promising results have been 

emonstrated in identifying AD-related harmonic alterations, the 

lobal nature of harmonic waves ( Fig. 1 (a)) limits their application 

n characterizing the local propagation of neuropathological burden 

cross the associated subnetworks in the brain. 
m

2 
To overcome this limitation, we propose a novel manifold har- 

onic localization approach to extend our whole-brain harmonic 

aves to region-adaptive harmonic wavelets ( Fig. 1 (c-d)), which 

re localized at each brain region ( Fig. 1 (b)). Specifically, we op- 

imize the harmonic wavelets on top of the global harmonic waves 

uch that the learned harmonic wavelets are complementary (or- 

hogonal) to the existing whole-brain harmonic bases. Since the 

armonic wavelets opt to capture the local network topology, the 

egion adaptive characteristics allow us to investigate the spread- 

ng pathway of AD-related neuropathological events. Furthermore, 

he oscillation pattern presented in each harmonic wavelet (in the 

pectrum domain) and the localized sub-network (in the spatial 

omain) offer a new window to investigate the spatial-spectrum 

lteration of neuropathological events across the brain network. As 

 result, the localized harmonic-like pattern captured by our har- 

onic wavelet analysis is more attractive than the current neu- 

oimaging biomarkers, which merely focus on the concentration 

evel of neuropathological burden at each region. 

We have evaluated the statistical power of our method on 

ynthetic data and neuroimaging data from the ADNI database. 

ompared with other popular empirical biomarkers, our proposed 

ethod achieves higher discrimination power for disentangling 

N (cognitively normal), EMCI (early-stage mild cognitive impair- 

ent), and LMCI (late-state mild cognitive impairment) compar- 

son. Moreover, we have identified a set of brain regions (called 

istributors) that are not only actively involved in the distribution 

f pathological proteins (such as amyloid and tau) but also lead 

o cognitive decline. Since these identified distributor regions re- 

eive and pass on the neuropathological burdens faster than the 

ther brain regions, the observed concentration levels might not be 

s high as the high-risk regions in the PET (positron emission to- 

ography) scans that are often reported in the literature. However, 

ur harmonic wavelet analysis results imply that special attention 

hould be paid to the distributor regions in predicting the risk of 

eveloping AD, mainly due to the progressive nature of AD. 

.1. Relevant work 

Tremendous efforts have been made to explore the geometry 

atterns manifested in neuroimages. For example, the convoluted 

oldings along the brain cortical surface demand the manifold- 

ased algebra to model the diffusion process across the sulcus 

nd gyrus. Conventional Euclidian operations often yield biologi- 

ally unreasonable effects due to the gross simplification that data 

esides on a flat space, which is partially responsible for the lack 

f reproducible findings in cortex analysis. To address this chal- 

enge, the spectral graph wavelet transform ( Tan and Qiu, 2015 ) 

as been developed to model the shape geometry of the corti- 

al surface mesh, where the construction of these wavelets is gov- 

rned by the Laplacian-Beltrami operator of the underlying surface 

esh. Recently, Huang et al. (2020) proposed an efficient multi- 
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Fig. 2. Illustration of the workflow. (a) Individual-based harmonic waves �s is calculated by eigen-decomposition of graph Laplacian matrix of its underlying brain network 

G s . (b) The global common harmonic waves �̄ is learned by iteratively adjusting each �s and updating the manifold center on the Stiefel manifold. (c) The region-based indi- 

vidual harmonic wavelets �s,i of node v i in brain network G s is estimated by minimizing three energy terms, including topology preservation in red, subnetwork localization 

penalty in black, and redundancy removal in blue. (d) Finally, the region-based common harmonic wavelets �̄i is obtained by learning the Fréchet mean from a population 

of { �s,i | s = 1 , · · · , m } for node v i on the Stiefel manifold. 
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p

cale approach to model the brain sulcal and gyral growth pat- 

erns in brain development. Enlighted by these pioneer works, we 

ut the spotlight on the graph Laplacian of brain network and 

resent a manifold-based harmonic wavelet analysis framework to 

haracterize the propagation events of neuropathologies through- 

ut the brain. It is worth noting that current state-of-the-art meth- 

ds solve the wavelet base functions on an individual basis. How- 

ver, our work aims to estimate the common harmonic wavelets 

at the population level) that can provide a standardized measure- 

ent of pathology propagation across subjects. Thus, the harmonic 

avelets in our work are the approximation to the graph wavelets 

onstructed in Huang et al. (2020) , Kim et al. (2015) , Tan and Qiu

2015) . 

In this paper, we develop a set of manifold-based algebra and 

ptimization methods that are tailored to the Eigen-system of the 

rain network. Compared to current biomarker studies, our har- 

onic wavelets analysis framework respects the geometry of net- 

ork data and yields more putative harmonic-like biomarkers with 

reat mathematics insight. On top of this, our contributions to the 

euroimaging and neuroscience field have two folds. (1) We pro- 

ose a novel harmonic-like biomarker to characterize the propa- 

ation patterns underlying the disease progression, which allows 

s to advance our underpinning of the pathophysiological mech- 

nism of neurodegenerative diseases and diagnose disease in the 

arly stage. We demonstrate that our proposed method not only 

iscovers the spreading pathways of neuropathological events but 

lso provides a new imaging biomarker with higher discrimina- 

ion power for predicting the early stage of AD than other em- 

irical biomarkers. (2) As a proof-of-concept approach, the spatial- 

pectrum analysis framework offers a new window to capture the 

ropagation pathway of neuropathological events throughout the 
3 
rain. Furthermore, we demonstrate the potential application of 

ur harmonic wavelet analysis in identifying the critical brain re- 

ions that are actively involved in the spreading of neuropatho- 

ogical burdens, which might provide a new clue to understanding 

eurodegenerative diseases. 

. Method 

Fig. 2 outlines our learning-based approach of extending from 

armonic waves to harmonic wavelets. In general, our method 

onsists of four steps. (1) Calculate individual harmonic waves. It 

s straightforward to calculate each harmonic wave by the eigen- 

ecomposition of graph Laplacian matrix of its underlying brain 

etwork, as shown in Fig. 2 (a). (2) Estimating global common 

armonic waves . As demonstrated in Fig. 2 (b), we deploy our 

anifold-based optimization method ( Chen et al., 2020a ) to ob- 

ain the common harmonic waves across the individual harmonic 

aves in step (1), which acts as the reference to infer harmonic 

avelets at each brain region. (3) Optimizing region-adaptive har- 

onic wavelets within each subject. We present an optimization ap- 

roach to estimate the harmonic wavelets at each brain region 

 Fig. 2 (c)), which is required to capture the local network topol- 

gy centered at the underlying region and maintain orthogonality 

o global common harmonic waves (in step 2). (4) Inferring com- 

on harmonic wavelets . Given a set of region-adaptive harmonic 

avelets, we identify the common harmonic wavelets region by 

egion, which is essentially the Fréchet mean on the manifold, as 

llustrated in Fig. 2 (d). The output is the localized common har- 

onic wavelets associated with each node in the brain network. 

he wavelets can be used to explain and characterize the local 

ropagation pattern of neuropathological events across brain net- 
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2

m

orks. In the following, we first present the objective functions 

sed in the above four steps from Section 2.1 to Section 2.4 . Then

e give the detail of optimization in Section 2.5 . We demonstrate 

he potential applications of harmonic wavelets in Section 2.6 . 

.1. Brain network and harmonic waves 

Mathematically, each brain network constructed through MRI 

nd DTI neuroimages can be encoded as a graph G = ( V, E, W ) , 

ith node set V = { v i | i ∈ 1 , · · · , N} from N brain regions and edge

et E = { e i j | ( v i , v j ) ∈ V × V } representing all possible interactions

etween nodes. Let matrix W = [ w i j ] N×N ∈ R 

N×N be the symmet- 

ic adjacency matrix with non-negative weights w i j between the 

etwork node v i and v j . Then, we compute the symmetric graph 

aplacian matrix L on each underlying graph as: 

 = D − W . (1) 

here the i th diagonal element D ( i, i ) = 

N ∑ 

j=1 

w i j for the diagonal 

atrix D can be regarded as the degree matrix of the graph. Each 

iagonal element is equal to the total connectivity degree of the 

nderlying node. 

As stated in Atasoy et al. (2016) , we calculate a set of individual

armonic waves by solving the following eigenvalue problem: 

min 

∈ R N×P 
t r 

(
�T L�

)
, s.t . �T � = I P (2) 

here tr(·) is the trace operator and I P denotes the P × P identity 

atrix. The deterministic solution � of the optimization problem 

n Eq. (2) is a set of eigenvectors of the Laplacian matrix L. It is

orth noting that the eigenvectors � are sorted column by column 

n increasing order of eigenvalues { λp | p = 1 , · · · , P, λ1 ≤ λ2 ≤ · · · ≤
P } ( Chavel, 1984 ), indicating the harmonic wave exhibits faster 

scillation patterns across the brain network as the eigenvalue in- 

reases. Since the harmonic waves associated with the high fre- 

uency (larger eigenvalues) are often sensitive to possible noise, 

e only consider the first P ( P < N) harmonic waves. Given that 

ach individual harmonic set � is an N × P orthogonal matrix, it 

s reasonable to consider � of the individual brain network as an 

nstance drawn from Stiefel manifold ( Chikuse, 2012 ). 

.2. Estimation of global common harmonic waves 

Given m brain networks G s ( s = 1 , · · · , m ) , the individual har- 

onic waves �s (an orthogonal matrix) thus can be obtained by 

ptimizing the objective function in Eq. (2) . We are now inter- 

sted in estimating the mean �̄ of all individual harmonic waves 

 �s | s = 1 , · · · , m } . It is served as a brain network unbiased refer-

nce, and is called the global common harmonic waves. It is also 

n orthogonal matrix. Mathematically, we require the global com- 

on harmonic waves �̄ to be close to the manifold center with the 

hortest geodesic distance to all individual harmonic waves { �s } . 
ollowing our previous work ( Chen et al., 2020a ), we formulate the 

bjective function as: 

min 

{ �s } , ̄�
F { �s } , ̄� = min 

{ �s } , ̄�

m ∑ 

s =1 

{
tr 

(
�T 

s L s �s 

)
+ λ

(
P − tr 

(
�T 

s �̄
))}

s.t. ∀ s : �T 
s �s = I P (3) 

here λ stands for the scalar balancing topological structure and 

entralization degree in Eq. (3) . 

Specifically, the first term requires each set of individual har- 

onic waves to retain the topological information derived from the 

aplacian matrix L s . The second term is the geodesic distance con- 

traint that ensures the global common harmonic waves �̄ is close 

o all individual harmonic waves { �s } on the Stiefel manifold. The 
4 
eodesic distance between �s and �̄ is measured by a distance 

unction ( Chikuse, 2012 ) d 2 ( �s , �̄) = 1 / 2 tr ( �s − �̄) T ( �s − �̄) =
 − tr( �T 

s �̄) . The orthogonal constraint term �T 
s �s = I P ( ∀ s ) in 

q. (3) ensures that each individual harmonic waves �s is lying on 

he Stiefel manifold. We presented an alternative solution to op- 

imize { �s } and the common global harmonic waves �̄ using the 

anifold optimization technique (please see the optimization de- 

ails in Section 2.5 ). 

Similar to the Fourier bases in signal processing, harmonic 

aves have the limitation of global-ness. In many neuroimaging 

pplications, biomarkers are expected to capture the local alter- 

tions that occur at particular brain regions. To overcome this lim- 

tation, we extend from the global harmonic wave to localized har- 

onic wavelets by adding the region-adaptive constraint to Eq. (2) . 

.3. Construction of region-adaptive individual harmonic wavelets 

To alleviate the limitation of global common harmonic waves 
¯ , we propose the following three components to optimize the 

egion-based individual harmonic wavelets �s,i ∈ R 

N×Q (Q < N) for 

 

th node v i of graph G s . As we will explain later, Q denotes the 

umber of wavelet frequencies. 

First , the region-based individual harmonic wavelets �s,i should 

reserve the locality of the topological structure, and this 

an be achieved by minimizing a harmonic energy E e ( �s,i ) = 

r( �T 
s,i 

L s �s,i ) , satisfying �T 
s,i 

�s,i = I Q . 

Second , the support of each individual harmonic wavelets �s,i 

oes not expand more than a subnetwork centered at the under- 

ying node v i of graph G s . To relieve the task, we introduce a bi- 

ary mask u s,i = [ u s,i ( j) ] N 
j=1 

as a slack vector, with u s,i ( j) = 1 rep-

esenting the node v j can be reached by the node v i within k 

umps and u s,i ( j) = 0 otherwise. It is worth noting that we use the 

hortest path to measure the distance between two nodes v i and 

 j , based on a binarized edge map via thresholding on adjacency 

atrix W s . A harmonic localization term is defined by E l ( �s,i ) = 

r( �T 
s,i 

diag( 1 − u s,i ) �s,i ) . The minimizing E l ( �s,i ) is equivalent to 

ncourage �s,i 
2 to be zero out of the subnetwork. The localiza- 

ion term E l is used to suppress the waves (oscillation) far from v i 
hile preserve the waves nearby v i , since diag( 1 − u s,i ) is zer o for 

he nodes closely connected to v i within k jumps and has no effect 

n minimizing E l . 

Third , to achieve complementary characterizing the network by 

oth the global common harmonic waves �̄ and each region- 

daptive individual harmonic wavelets �s,i , they are penalized for 

eing orthogonal via constraint �T 
s,i 

�̄ = 0 . However, training of 

ach individual harmonic wavelet to satisfy the orthogonality is 

omputationally expensive. We relax it alternatively by promoting 

he orthogonality to the subspace spanned by �̄, through minimiz- 

ng E p = tr( �T 
s,i 

�̄�̄T �s,i ) . 

Finally, the whole energy function of identifying region- 

daptive individual harmonic wavelets �s,i for node v i of graph G s 
s formulated as: 

min 

�s,i 

F �s,i 
= min 

�s,i 

E e ( �s,i ) + μ1 E l ( �s,i ) + μ2 E p ( �s,i ) 

s.t. �T 
s,i �s,i = I Q (4) 

here μ1 and μ2 are two scalars that balance the strength of 

ubnetwork localization and redundancy with the global common 

armonic waves �̄. The detail of optimizing Eq. (4) is given in 

ection 2.5 . 

.4. Identification of region-adaptive common harmonic wavelets 

Similar to the motivation of constructing global common har- 

onic waves �̄ for group comparison, we go one step further 
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Table 1 

Algorithm for identifying region-adaptive common harmonic wavelets. 

Parameters: λ; μ1 ; μ2 ;

Input: Adjacency matrix W s ∈ R N×N , s = 1 , 2 , · · · , m 

Init. Calculate Laplacian matrix L s = D s − W s , where 

D = D ( i, i ) = 

N ∑ 

j=1 

w i j ; 

Initialize orthogonal matrix �s through the 

Eigen-decomposition of Laplacian matrix L s ; 

Initialize parameter λ = 0 . 005 , μ1 = 10 and μ2 = 30 ;
Step 1: 

Optimize the global common harmonic waves �̄ from a 

population of individual harmonic waves { �s } by solving 

the energy function Eq. (3) in two alternative steps. 

Step 2: 

Construct the region-adaptive individual harmonic 

wavelets �s,i for node v i of graph G s by solving the 

Eigen-decomposition of matrix �s,i in Eq. (6) . 

Step 3: 

Identify the region-adaptive common harmonic wavelets 

�̄i from the whole region-adaptive individual harmonic 

wavelets { �s,i | s = 1 , · · · , m } at node v i by solving the 

Fréchet mean in Eq. (5) on the Stiefel manifold. 

Output Region-adaptive common harmonic wavelets 

{ ̄�i | i = 1 , · · · , N} 

t

d

G  

t

m

w

s

S

j

w

m

p

t

{  

r

t

c

r

2

c

t

m

i

p

w

w

i

2

a

u

g

A

2

s

w

w

o

h

F

w

m

p

N

t

w

m  

2

2

b

t

t

o

t

a

t

2

t

h

w  

t

t

s

2

c

h

μ
s

r

t

e

b

a

d

e

p

t

r

I

5

λ  

a

o

2

b

t

e

y

a

d

o infer the common harmonic wavelets �̄i for node v i , which 

escribes the shared local network topology across individuals. 

iven a set of individual harmonic wavelets { �s,i | s = 1 , · · · , m } ob-

ained by Eq. (4) , discovering the region-adaptive common har- 

onic wavelets �̄i implies for estimating the manifold mean, 

hich has the shortest geodesic distances to all the observed in- 

tances { �s,i } residing on the Stiefel manifold. Here, we reuse the 

tiefel manifold distance from Section 2.2 and formulate the ob- 

ective function of finding common harmonic wavelets associated 

ith the node v i as: 

in 

�̄i 

F �̄i 
= min 

�̄i 

m ∑ 

s =1 

d 2 
(
�s,i , �̄i 

)
= min 

�̄i 

m ∑ 

s =1 

(
Q − tr 

(
�T 

s,i �̄i 

))
(5) 

One possible solution to Eq. (5) is the classic Fréchet mean. We 

resent the optimization of Eq. (5) in Section 2.5 . Compared with 

he global common harmonic waves �̄, the harmonic wavelets 

 ̄�i | i = 1 , . . . , N} are specific to each brain region v i . Thus, such

egion-adaptive harmonic wavelets act like "swiss army knife" of 

he network topology, allowing us to precisely characterize the 

omplex neurodegeneration process that differentially affects brain 

egions. 

.5. Optimization 

Our framework mainly consists of three energy functions, in- 

luding estimation of global common harmonic waves, construc- 

ion of region-adaptive individual harmonic wavelets, and opti- 

ization of region-adaptive common harmonic wavelets. Since the 

nvolved variables are the instance of the Stiefel manifold, we 

ropose the following manifold-based optimization methods. The 

hole optimization framework is briefly summarized in Table 1 

ith the computational and space complexity analyses introduced 

n Suppl. S1 . 

.5.1. Optimizing the global common harmonic waves in two 

lternative steps 

Given that it is computationally expensive to estimate individ- 

al and common harmonic waves jointly in Eq. (3) , we propose the 

radient descent manifold optimization under the framework of 

DMM (Alternating Direction Method of Multipliers) ( Boyd et al., 

011 ). Specifically, our numerical solution iteratively alternates two 

teps until convergence. (1) Adjust each individual-based harmonic 
5 
ave toward the latent manifold center. Each individual harmonic 

aves �s is not only influenced by the topological structure of its 

wn Laplacian matrix L s but also attracted by the latent common 

armonic waves. (2) Estimate the global common harmonic waves . 

ixing the individual harmonic waves { �s } obtained from step 1, 

e first project each �s to the tangent space at the current com- 

on harmonic waves. Then, we calculate the mean tangent which 

oints to the new location of manifold center on the tangent plane. 

ext, we map the mean tangent back to the Stiefel manifold to ob- 

ain the new manifold center estimation (latent common harmonic 

aves), which is used for guiding the refinement of individual har- 

onic waves in step 1. Please refer to our recent work ( Chen et al.,

020a ) for detail. 

.5.2. Constructing the region-adaptive individual harmonic wavelets 

y Eigen-decomposition 

Due to the linearity of the trace, it is clear that three trace 

erms in Eq. (4) can be unified into one trace term with a ma- 

rix �s,i = L s + μ1 diag( 1 − u s,i ) + μ2 ̄��̄T . Thus, the optimization 

f Eq. (4) is boiled down to the eigen-decomposition of the ma- 

rix �s,i : 

rgmin 

�s,i 

t r 
(
�T 

s,i �s,i �s,i 

)
s.t . �T 

s,i �s,i = I Q (6) 

Since �s,i is symmetric and positive semi-definite, it is compu- 

ationally efficient to obtain �s,i for each node v i of graph G s . 

.5.3. Learning the region-adaptive common harmonic wavelets on 

he Stiefel manifold 

As with the second step of optimizing the global common 

armonic waves, given the region-adaptive individual harmonic 

avelets { �s,i | s = 1 , · · · , m } for all graph { G s } at node v i , the op-

imization { ̄�i } of Eq. (5) falls into the classic problem of solving 

he Fréchet mean on the Stiefel manifold, which can be effectively 

olved by adopting the Weiszfeld algorithm ( Aftab et al., 2014 ). 

.5.4. Hyper-parameter pruning 

Our proposed framework for identifying the region-adaptive 

ommon harmonic wavelets contains two types of parameters: 

armonic dimension ( P and Q) and hyperparameters ( λ, μ1 , and 

2 ). Regarding the dimension reduction, we determine the dimen- 

ion P for each individual-based harmonic waves �s based on the 

econstruction error between the observed Laplacian matrix L s and 

he reconstructed Laplacian matrix using only the top P smallest 

igenvalues and eigenvectors. Generally, we select the P as the sta- 

le point such that the decrease of reconstruction error is marginal 

s P increases. In addition, the dimension Q of region-adaptive in- 

ividual harmonic wavelets �s,i is empirically set based on the av- 

rage node degree of all adjacency matrices. Regarding the hyper- 

arameter selection, we adopt a grid search strategy to determine 

he optimal value of parameter λ, μ1 and μ2 based on the signal 

econstruction loss on real data, which is presented in Section 3.1 . 

n the following experiments, we set the dimensions P and Q to 

5 and 10, respectively. In terms of hyperparameters, we select 

= 0 . 005 , μ1 = 10 and μ2 = 30 as the optimal parameters, which

chieve the lowest signal reconstruction loss. We give the details 

f evaluating the impact of hyper-parameters in Suppl. S2 . 

.6. Application of harmonic wavelets analysis 

Traditional neuroimaging studies usually adopt empirical 

iomarkers such as amyloid deposition and tau tangle aggregation 

o investigate the neuropathological mechanism of Alzheimer’s dis- 

ase. In this work, we propose a novel harmonic wavelet anal- 

sis to discover the spatial-spectrum alterations that are associ- 

ted with the local propagation patterns of neuropathological bur- 

ens across brain networks. We use the learned common harmonic 
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avelets { ̄�i } to characterize the graph-eigen-adaptive represen- 

ations (GEAR in short) for each instance of empirical biomarkers 

such as amyloid) f ∈ R 

N by: 

ˆ 
 i,q = 

∣∣ ˆ αi,q 

∣∣2 = 

∣∣ f, ϕ̄ i,q 

∣∣2 
(7) 

here each element in vector f represents the regional biomarker 

evel. The intuition behind GEAR 

ˆ h i,q is essentially the harmonic 

nergy of spreading the neuropathology burden f through the un- 

erlying wavelet ϕ̄ i,q at the region v i . The harmonic power ˆ αi,q 

haracterizes the momentum (speed) of propagation for each self- 

rganized oscillation pattern across localized subnetwork centered 

n the region v i . In Section 3 , we will demonstrate that our 

patial-spectrum representations achieve enhanced performance in 

tratifying CN, EMCI, and LMCI, compared with current empirical 

iomarkers. 

. Experiments 

After describing the neuroimaging data in Section 3.1 , we first 

est the representation power of harmonic wavelets by decom- 

osing the graph signal and reconstructing it back to the sig- 

al domain in Section 3.2 . Then, we evaluate the replicability of 

egion-adaptive common harmonic wavelets using our proposed 

lgorithm via the resampling test in Section 3.3 . Next, we investi- 

ate the diagnostic ability of our spatial-spectrum representations 

n stratifying aging subjects into the pre-clinical stage of AD in 

ection 3.4 . Finally, we evaluate our proof-of-concept application in 

D study that the pathological events spreading in the context of 

hite matter wiring exhibit ubiquitous oscillation patterns which 

an be captured by the optimized harmonic wavelets. 

.1. Data description 

.1.1. Training data for identifying the region-adaptive common 

armonic wavelets 

Here, we collect neuroimaging data of 138 subjects with T1- 

eighted MR and DWI images from the ADNI database ( http:// 

dni.loni.usc.edu/ ). We apply the following major image process- 

ng steps to construct the structural brain network. First, we recon- 

truct and parcellate the cortical white matter surface into 148 re- 

ions using Destrieux atlas ( Destrieux et al., 2010 ) based on the T1-

eighted MR images via FreeSurfer. Then, we apply surface seed- 

ased probabilistic fiber tractography ( Destrieux et al., 2010 ) to the 

WI images via FSL, thus producing a 148 × 148 anatomical con- 

ectivity matrix W s , where the weight of the anatomical connec- 

ivity of pair-wise regions is the whole brain ratio of the number 

f fibers between the regions. Finally, we apply our proposed har- 

onic wavelet learning method on these 138 adjacency matrices 

 W s | s = 1 , · · · , 138 } to identify the region-adaptive common har-

onic wavelets { ̄�i | i = 1 , · · · , 148 } . 
.1.2. Testing data for discovering the spatial-spectrum alterations in 

D 

After obtaining the harmonic wavelets { ̄�i } , we select another 

ataset from ADNI for the group comparison analysis, where the 

maging modalities include amyloid-PET and tau-PET. The statisti- 

al information of the testing data is shown in Table 2 . We apply

he same data processing pipeline to parcellate the cortical sur- 

ace into the 148 structural brain regions and then calculate the 

tandard update value ratio (SUVR) of PET imaging for each region, 

here the cerebellum is used as the reference in calculating the 

UVR. 

.2. Evaluating the representation power of harmonic wavelets 

In this section, we examine the representation power of the 

earned harmonic wavelets by evaluating the reconstruction effort 
6 
f a graph signal running on the simulated brain network. Specifi- 

ally, we first synthesize a brain network with 30 nodes and then 

andomly generate a graph signal f with each element represent- 

ng the signal strength of node, ranging from −1 to +1 , as shown 

n Fig. 3 (a). Then, the reconstruction loss of f can be calculated 

y ( f − �̄�̄T f ) with the global harmonic waves �̄. Since we select 

he first P eigenvectors, i.e., �̄ ∈ R 

N×P ( P < N ) , the residual signal 

fter reconstruction using the first 20 ( P = 20 ) harmonic waves is 

isplayed in Fig. 3 (b), where red and blue arrows stand for positive 

nd negative residuals, respectively. Furthermore, we show the his- 

ogram of residuals in the top right corner. 

As mentioned in Section 2.3 , the harmonic wavelets �̄i at each 

ode v i are the complementary bases to the global harmonic waves 
¯ . In this context, we can reconstruct the signal value at each 

ode v i by ˜ f i = �̄�̄T ( f � u i ) + �̄i ̄�
T 
i 

f , where � is the Hadamard 

roduct and u i is the subnetwork mask vector centered at the 

ode v i . The first term quantifies the global reconstruction of trun- 

ated signal f � u i at node v i , where we set P = 20 . In addition,

he second term is the localized reconstruction component, where 

e set Q = 5 . Therefore, the reconstruction loss can be estimated 

y ( f − ˜ f ), where the residual signal and the corresponding his- 

ogram of reconstruction loss are shown in Fig. 3 (d). It is clear 

hat our harmonic wavelets have significantly smaller reconstruc- 

ion loss compared with using global harmonic waves only. For the 

ake of fairness, we re-estimate the reconstruction loss by expand- 

ng the number of harmonic waves, i.e., increasing P from 20 to 

5, which has the equal total number of bases as our harmonic 

avelets ( P = 20 , Q = 5 ). As shown in Fig. 3 (c), however, the re-

onstruction loss is still worse than our harmonic wavelets, indi- 

ating our harmonic wavelets can more effectively characterize the 

ocal network topology than the counterpart of global harmonic 

aves. Moreover, we compare the reconstruction performance of 

he learned harmonic wavelets with global harmonic waves un- 

er various noise contaminations on simulated data (as shown 

n Suppl. S3 ). The experimental results demonstrate that the har- 

onic wavelets achieve the best reconstruction performance when 

he noise contamination is low. However, the harmonic wavelets 

re susceptible to noise contamination, since they can character- 

ze the local network topology and capture the details of the graph 

ignal. 

Using the similar reconstruction procedure, we evaluate the re- 

onstruction loss of regional amyloid and tau levels, where the av- 

rage reconstruction loss by using 55 global harmonic waves, 60 

lobal harmonic waves, and our region-adaptive harmonic wavelets 

 P = 55 , Q = 10 ) are displayed in blue, red, and green, respectively,

n Fig. 3 (e-f). All reconstruction loss on two AD biomarkers demon- 

trates that our harmonic wavelets achieve better representation 

ower than global harmonic waves, where the improvements are 

tatistically significant under t-test ( p < 0 . 01 ). 

.3. Evaluating the replicability of common harmonic wavelets 

Here, we estimate the robustness of the learned common har- 

onic wavelets through a replicability test. Specifically, we ap- 

ly the following resample procedure to generate 50 test/retest 

atasets from the training data: (1) randomly sample 95 brain net- 

orks from the 138 training brain networks; (2) continue to sam- 

le another two sets of networks from the remaining 43 subjects 

eparately, each with 5 networks; (3) form two paired cohorts by 

ombining the networks sampled in step 1 and 2. Then, we ap- 

ly our proposed method to two datasets independently. Thus, we 

ave 50 samples of harmonic wavelets for the test dataset and an- 

ther 50 samples for the retest dataset. Since two paired cohorts 

nly have 5% ( 5 / 100 ) differences in terms of network data, we 

an evaluate the replicability of our method by testing whether 

here exists a significant difference ( p < 0 . 01 ) at each coefficient

http://adni.loni.usc.edu/
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Table 2 

Statistics of testing data in our experiments. 

Data Gender Number Range of Age Average Age CN EMCI LMCI 

Amyloid Male 450 55.0 ∼91.4 73.4 136 184 130 

Female 389 55.0 ∼89.6 71.7 148 145 96 

Total 839 55.0 ∼91.4 72.6 284 329 226 

Tau Male 207 55.0 ∼90.1 72.4 76 69 62 

Female 173 55.0 ∼89.9 70.3 81 44 48 

Total 380 55.0 ∼90.1 71.3 157 113 110 

Fig. 3. Representation power comparison between global harmonic wave and our region-adaptive harmonic wavelets in simulated data (left) and A-T biomarker data (right). 

(a) The simulated network and one graph signal (displayed in arrows). (b-d) The reconstruction loss on simulated data using global harmonic waves �̄( P = 20 ) , global 

harmonic waves �̄( P = 25 ) , and our harmonic wavelets �̄( P = 20 and Q = 5 ). (e) The reconstruction loss on amyloid-PET and tau-PET data on the brain network with 148 

nodes by global harmonic waves �̄( P = 55 ) in blue, global harmonic waves �̄( P = 60 ) in red, and our harmonic wavelets �̄( P = 55 , Q = 5 ) in green, where ‘ ∗ ’ denotes 

statistical significance ( p < 0 . 01 ). 

Fig. 4. Replicability test of our common harmonic wavelets, where the chance of failing replicability test at each brain cortical region is color-coded using the colormap in 

the right. 
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n harmonic wavelet matrix for each node via the paired t-test. 

ewer elements showing significance indicate better replicability 

t each node. Since the harmonic wavelets are associated with 

rain regions, we count the number of wavelet coefficients that 

ail the replicability testing and normalize it by the total amount of 

avelet coefficients at each region. Then, we display such a ratio at 

ach brain cortical region in Fig. 4 . It is apparent that the wavelet

oefficients pass the replicability test in most brain regions, in- 

icating the estimated common harmonic wavelets are consistent 

cross individuals. 

.4. Evaluating the statistical power of GEAR biomarker based on 

ommon harmonic wavelets 

In this experiment, we estimate the statistical power of our 

EAR ( Eq. (7) ) in stratifying the CN, EMCI, and LMCI. Since the

egion-wise SUVR extracted from amyloid-PET and tau-PET have 

een widely used in neuroimaging studies, we compare our GEAR 

iomarkers with these empirical biomarkers through the following 

wo tests. 
7 
In the first experiment, we build on three group comparisons 

CN/EMCI, CN/LMCI, and EMCI/LMCI) of A and T biomarkers to 

dentify the node alterations using empirical SUVR and GEAR. Re- 

arding the empirical biomarkers, we apply the general linear 

odel (GLM) to predict diagnostic labels using SUVR at each node, 

here age and gender are confounders. Regarding the new GEAR 

iomarker, since there are ten harmonic wavelets at each node, we 

pply the GLM to these ten harmonic wavelets, where the group 

ifference at each brain region depends on the smallest p value 

cross the spectrum of the GEAR biomarkers at the underlying 

ode. In both statistical tests, all the p values are corrected using 

alse Discovery Rate by Benjamini-Hochberg (BH) ( Benjamini and 

ochberg, 1995 ) since we assume each node is not completely in- 

ependent of other nodes in the brain network. 

In the second experiment, we test the diagnostic potential of 

ur GEAR and empirical SUVR by estimating the accuracy of the 

arly diagnosis of AD in the pre-clinical stage. Specifically, we use 

he SUVR data and GEAR biomarkers as input to train the linear 

upport vector machine (SVM) classifier separately. Then we eval- 

ate the Area Under the Receiver Operating Characteristic (AUROC) 
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Fig. 5. The Manhattan plot of significant values of harmonic wavelets in CN/LMCI comparison on Amyloid data. 
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nd Area Under the Precision-Recall curve (AUPR) score using 10- 

old cross-validation. 

.4.1. A-biomarker: amyloid SUVR vs. amyloid GEAR 

In the group comparison experiment, we find that amyloid 

UVR has identified one brain region ( inferior frontal gyrus ) ex- 

ibiting a significant difference in CN/EMCI and no significant re- 

ions in EMCI/LMCI comparison. In contrast, our amyloid GEAR 

iomarker finds in total 43 and 9 nodes showing significant 

ifference between CN/EMCI and EMCI/LMCI cohorts with FDR- 

djusted p < 10 −5 . Besides, only one region ( rectus gyrus ) manifests 

N/LMCI difference using amyloid SUVR, while 29 brain regions 

how CN/LMCI difference using amyloid GEAR (FDR-adjusted p < 

0 −14 ). These results imply our amyloid GEAR biomarker achieves 

igher statistical power in identifying disrupted regions than the 

mpirical neuroimaging biomarkers. 

Since there are multiple harmonic wavelets associated with 

ach brain region, we go one step further to evaluate the statis- 

ical power of all harmonic wavelets (at different brain regions 

nd across graph spectrum) by taking CN/LMCI comparison as an 

xample. First, we randomly select 90% of samples in CN and 

MCI groups to calculate the FDR-adjusted p value for each har- 

onic wavelet at each region. We repeat this process 50 times. 

ig. 5 shows the Manhattan plot of significant value (negative 

og-transformation of FDR-adjusted p value) for each harmonic 

avelet, where we use different colors to indicate the frequency 

f harmonic wavelet. It is clear that the majority body of the 

armonic wavelets show competitive power in separating CN and 

MCI groups (FDR-adjusted p < 0 . 01 ), as most of the p-values are

bove the green reference line ( −log 10 0 . 01 ). 

Recall we have identified 29 brain regions showing significant 

N/LMCI difference using GEAR biomarker. Here, we focus on the 

armonic wavelets associated with these 29 brain regions (dis- 

layed in Fig. 6 (a)). First, we plot the p-values of each harmonic 

avelet at each region (horizontal axis) and across harmonic fre- 

uencies (vertical axis) in Fig. 6 (d), where the color and size of 

ach circle reflect the significance level (in −log 10 p). Furthermore, 

e show the average of GEAR biomarker from lowest ( λ1 ) to 

he highest ( λ10 ) frequency for CN and LMCI groups in Fig. 6 (b),

espectively. To measure the separation between CN and LMCI 

roups, the Fisher score J F (ratio between inter-class mean and 

ntra-class variance) of the GEAR biomarker between CN and LMCI 

ubjects is also shown in the outermost ring in Fig. 6 (b). In addi-

ion, we measure the whole-brain GEAR biomarker level of amy- 

oid for each subject and plot its distribution for CN (in red) and 

MCI (in blue) subjects in Fig. 6 (c). These results suggest that the 

ncrement of amyloid deposition raises the harmonic energy of the 

rain network, which eventually leads to less stable system status. 

In Fig. 6 (b), it is apparent that the harmonic-based alterations 

ave the preference to affect the medium frequency spectrum. It 

s also evidenced by the fact that the harmonic wavelets with 
8 
he smallest p-values are all associated with medium frequencies. 

ince each harmonic wavelet exhibits ubiquitous oscillation pat- 

erns on the brain network, we conceptualize that such oscilla- 

ion patterns of each identified significant harmonic wavelet might 

e overlapped with the spreading pathway of amyloid plaque 

hroughout the brain network. The in-depth discussion on the neu- 

oscience insight of this hypothesis can be found in Section 3.5 . 

ere, we set the stage to visualize the harmonic wavelets with 

he top three strongest statistical differences (smallest p-values) in 

ig. 7 , where the red dot denotes the underlying node, and the 

ed/blue arrows indicate the positive/negative oscillations in each 

armonic wavelet. 

Furthermore, we evaluate the diagnostic potential of identified 

ignificant amyloid SUVR and amyloid GEAR biomarkers by training 

 linear SVM classifier for CN/EMCI/LMCI classification separately. 

e use 10-fold cross-validation to evaluate the classification re- 

ults (AUROC and AUPR), as shown in Fig. 8 , where the ‘ ∗’ indicates

hat the classification performance of our GEAR is significantly bet- 

er than that of the empirical SUVR. It is apparent that our amyloid 

EAR consistently achieves significantly higher classification per- 

ormance compared with empirical amyloid SUVR in three clas- 

ification tasks. These results demonstrate our proposed region- 

daptive common harmonic wavelet technique has great potential 

n the early diagnosis of AD. 

.4.2. T-biomarker: tau SUVR vs. tau GEAR 

Similar to the experiments in Section 3.4.1 , we first apply node- 

ise group comparison using tau SUVR and tau GEAR biomarker. 

ive brain regions exhibit EMCI vs. LMCI difference using tau SUVR, 

ompared to 20 regions showing significant group difference using 

au GEAR biomarker, both after FDR-correction ( p < 10 −5 ). In addi- 

ion, both tau SUVR and GEAR biomarkers have 24 regions showing 

ignificant CN/LMCI difference (FDR-adjusted p < 10 −9 ), although 

he spatial locations of the identified brain regions are slightly dif- 

erent. Note, we find five brain regions survive from the significant 

esting between CN and EMCI cohorts using tau GEAR biomarker, 

hile none of the brain regions shows significant difference using 

au SUVR (FDR-adjusted p < 0 . 01 ). 

Fig. 9 shows the Manhattan plot of p-value (negative log- 

ransformation of FDR-adjusted p value) for all harmonic wavelets 

148 regions × 10 harmonic frequencies) in CN/LMCI group com- 

arison, where most of the harmonic wavelets outperform the ref- 

rence line (i.e., p < 0 . 01 ) in terms of statistical power. Since 24

rain regions (shown in Fig. 10 (a)) have been identified manifest- 

ng significant group differences between CN and LMCI cohorts, we 

isplay the p-values of all the harmonic wavelets in these 24 re- 

ions (horizontal axis) across frequency (vertical axis) in Fig. 10 (d), 

here larger and darker circle indicate smaller p-value. We also 

how the average tau GEAR for CN and LMCI cohorts in each har- 

onic frequency band in Fig. 10 (b). The Fisher distance of mean 

armonic energy in each frequency is displayed in the outermost 
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Fig. 6. The CN vs. LMCI group comparison using amyloid GEAR biomarkers for the 29 brain regions (a) showing significant differences, where we plot the negative log 

p-value for each harmonic wavelet at different regions (horizontal axis) and across frequency (vertical axis) in (d). In (b), we not only display the average harmonic energy 

in each harmonic frequency for CN and LMCI groups but also show the separation (measured by Fisher score) between CN and LMCI groups. In (c), we show the histogram 

of whole-brain harmonic energy for CN and LMCI groups in red and blue, respectively. 

Fig. 7. The visualization of the top three significant harmonic wavelets associated with amyloid-PET in CN/EMCI (left), EMCI/LMCI (middle), and CN/LMCI (right) comparison. 

The underlying center node of the harmonic wavelet is denoted with a red dot. The up/down oscillation pattern in each wavelet is displayed by red/blue arrows. 
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ing plot in Fig. 10 (b). Similar to the preference pattern of amyloid 

EAR ( Fig. 6 ), harmonic-based alterations by tau GEAR biomarker 

ave the preference to affect the medium frequency spectrum. In 

ig. 10 (c), the histogram of whole-brain harmonic energy shows 

 similar trend as the amyloid GEAR that the higher level of tau 

athology in the late-stage cohort yields a higher load of harmonic 

nergy in the brain network system. The top three significant har- 

onic wavelets mapped on the cortical surface are also shown in 

ig. 11 . Moreover, the classification results of CN/EMCI, EMCI/LMCI, 

nd CN/LMCI, using tau SUVR and GEAR are shown in Fig. 12 , 

here our GEAR biomarker significantly outperforms tau SUVR on 

UROC and AUPR scores ( p < 0 . 01 ). 
9 
.5. Discussion on the neuroscience insight of harmonic wavelets 

Human brain is a complex system where each part of the brain 

s hierarchically interconnected. Although the pathophysiological 

echanism of Alzheimer’s disease is largely unknown, it is highly 

ossible that the observed pathological burden does not appear 

andomly in the brain. Instead, we conceptualize that the spread- 

ng of pathological burden is governed by the wiring topology of 

he underlying brain network. In this context, the role of harmonic 

avelets is acting as the predefined interference waves that can be 

sed to computationally excite the brain network undergoing neu- 

opathological events. Unique geometrical patterns are supposed to 
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Fig. 8. The classification results of using amyloid SUVR and amyloid GEAR in CN/EMCI, EMCI/LMCI, and CN/LMCI comparison. 

Fig. 9. The Manhattan plot of significant values of harmonic wavelets in CN/LMCI comparison using Tau GEAR biomarker. 

Fig. 10. The CN vs. LMCI group comparison using tau GEAR biomarkers for the 24 brain regions (a) showing significant differences, where we plot the negative log p-value 

for each harmonic wavelet at different regions (horizontal axis) and across frequency (vertical axis) in (d). In (b), we not only display the average harmonic energy in each 

harmonic frequency for CN and LMCI groups but also show the separation (measured by Fisher score) between CN and LMCI groups. In (c), we show the histogram of 

whole-brain harmonic energy for CN and LMCI groups in red and blue, respectively. 
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merge in the excitatory waves, depending on the resonance be- 

ween the spatial distribution of pathology in the brain and the 

requency of harmonic wavelets. 

Since each brain has a unique harmonic system, it is of high 

ecessity to characterize and compare the individual’s propaga- 

ion patterns of AD-related neuropathology using the common 

armonic wavelets. In Section 3.4 , we have shown the brain re- 

ions that manifest harmonic alterations between different stages 

f AD progression. Fig. 13 further display the aggregated harmonic 

avelets that pass the significance testing in each group compar- 

son, where we show the oscillation patterns as well as its sur- 
10 
ace rendering for the left and right hemispheres, respectively. 

ere, we conceptualize each aggregated harmonic wavelet as the 

opulation-wise resonance wave that is supposed to synchronize 

ith the spreading pathway of neuropathologies from the base- 

ine to the more advanced stage. For instance, the resonance wave 

erived from the CN/EMCI comparison ( Fig. 13 left) implies the 

preading pathway of amyloid or tau in the CN cohort after the 

isease progresses to EMCI stage. It is apparent amyloid and tau 

ave quite different resonance waves in the early stage of AD. 

owever, the oscillation patterns become similar in the late MCI 

tage, as the similarity map shown in Fig. 14 . Note, it makes more 
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Fig. 11. The visualization of the top three significant harmonic wavelets in Tau-PET. We use the same symbols as Fig. 7 for the illustration of harmonic wavelets. 

Fig. 12. The classification results of using tau SUVR and tau GEAR in CN/EMCI, EMCI/LMCI, and CN/LMCI comparison. 

Fig. 13. The visualization of oscillation patterns of resonance waves of amyloid (top) and tau (bottom) in CN/EMCI, EMCI/LMCI, and CN/LMCI comparison. 
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ense to test this proof-of-concept approach on an individual ba- 

is using the longitudinal neuroimaging data. We leave this for our 

uture work. 

Since amyloid and tau are the hallmarks of AD, most current 

tudies focus on the brain regions that exhibit high concentra- 

ion levels. There is a converging consensus that an excessively 

arge amount of pathology burden is a clear indicator of vulner- 

bility in the brain that needs immediate attention in AD diag- 

osis or treatment ( Mattson and Magnus, 2006 ; Saxena and Ca- 

oni, 2011 ; Wang et al., 2016 ). Inspired by the oscillation patterns 
11 
n the harmonic waves, we would like to argue that brain re- 

ions actively involved in the spreading of neuropathologies are 

lso critical to the cognitive decline in the neurodegeneration pro- 

ess. To support this argument, we provide the evidence in Fig. 15 . 

ecall harmonic power (in Eq. (6) ) can be used to quantify the 

preading speed of the underlying harmonic wavelet. In general, 

ast oscillations yield a quick exchange of pathologies from one 

egion to the other connected brain regions. The positive degree 

f harmonic power indicates the acceleration of the spreading 

rocess. On the contrary, the negative degree indicates the slow- 
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Fig. 14. The similarity map between amyloid and tau resonance waves as the disease progresses from the baseline to the more advanced stage. 

Fig. 15. Top: The illustration of critical brain regions for amyloid and tau biomarkers that show the strongest association between cognitive decline and harmonic power in 

GLM. The size and color of each node stand for the magnitude and sign of the slope in GLM. Bottom: The ranking of the SUVR degree of the identified brain regions in the 

brain. 
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own of speed in accumulating neuropathology. However, the to- 

al amount of pathological burden at the underlying brain region 

ight keep increasing. Following this clue, we apply a GLM to 

ach harmonic wavelet where the outcome is the change of MMSE 

core ( Tombaugh and Mclntyre, 1992 ) (difference between MMSE 

core taken at the last visit and baseline), and the predictor is the 

armonic power measured at the baseline. Age, gender, and diag- 

ostic label are confounders. After FDR correction ( p < 10 −8 ), we 

isualize the power of harmonic wavelets at the 18 brain regions 

hat manifest the strongest significance between cognitive decline 
12 
measured by MMSE change) and harmonic power in our GLMs 

or amyloid and tau in the top of Fig. 15 , where the size of the

ode reflects the magnitude of slope (the effect size of harmonic 

ower in GLM) and color indicates the sign of slope (red for pos- 

tive and blue for negative). Furthermore, we examine the SUVR 

evel of these identified brain regions (red boxes) at the bottom of 

ig. 15 , where we sort the SUVR degree in increasing order. It is 

nteresting that a significant number of regions play a critical role 

n spreading the pathology in the brain, however, the concentra- 

ion levels of pathology burden at these regions are not ranked at 
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he top in the brain. One possible explanation is that those brain 

egions shown in Fig. 15 are more inclined to transmit the pathol- 

gy from one region to other regions in a prion-like manner rather 

han accumulating and retaining the pathology in a local region of 

he brain. Considering AD is a progressive neurodegenerative dis- 

ase, our result shows the importance of studying critical regions 

n the brain which are responsible for cognitive decline due to the 

riticality in spreading the neuropathological burdens throughout 

he brain. 

. Conclusion 

In this paper, we propose a proof-of-concept computational ap- 

roach to capture the propagation patterns of AD-related neu- 

opathological burdens using neuroimaging and network science 

echnology. The backbone of our method is to find the region- 

daptive common harmonic wavelets that allow us to adaptively 

haracterize the spreading of pathological events localized at each 

rain region. To achieve it, we present a manifold-based opti- 

ization method to generate harmonic wavelets for each subject 

nd then unify them into a basis of common harmonic wavelets. 

he performance of our harmonic wavelet analysis has been ex- 

ensively evaluated in separating clinic cohorts of AD on large- 

cale neuroimaging data from the ADNI database. Furthermore, we 

emonstrate the potential application of identifying critical brain 

egions that are highly relevant to cognitive decline by actively 

eing involved in the spreading of neuropathologies throughout 

he brain. Our future work includes the understanding of genetic 

actors in harmonic-based alterations and population stratification 

ased on the harmonic feature representations. 
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